

Toward an "Urban Science"

Charlie Catlett

Senior Computer Scientist, Argonne National Laboratory
Director, Urban Center for Computation and Data
Senior Fellow, Computation Institute of the University of Chicago and Argonne National Laboratory
Visiting Artist, School of the Art Institute of Chicago

August 2014 Pheasant Run

UrbanCCD is an initiative of the Computation Institute, a joint institute of the University of Chicago and Argonne National Laboratory

Rapid Urbanization

In 2025:

70% 221

of Chinese people will live in cities with 1M or more people.

And by 2030...

Chinese cities will have 1M or more people.

China will add

400

million city dwellers

....requiring the construction of one New York City every year for several decades

Source: Foreign Policy Magazine, Sep/Oct 2010, "Megacities," Richard Dobbs (McKinsey Global Institute

Environment

Infrastructure

People

Years

Design and Planning

Days

Information-Driven Operations & Policy

Minutes

New Insights; New Interactions

Impact

Education, Training, Community Engagement

Site plan (zoning, phasing)

McCAFFERY

Interests

Open Data 1.0 – data portals to enable step one – visualization, mapping, correlating....

- Predicting high rates of EMS calls and contributing factors
- Populate a unique building ID across datasets
- Creating 'neighborhood health index'
- Predicting movements in the neighborhood health index
- Predicting locations of abandoned buildings / vacant lots
- Visual recognition of neighborhood improvement or retrograde
- Route optimization for routine city vehicle routes (snow plows, garbage collection, tree trimming) and for emergency routes as well.
- Estimate increases in crime incidents
- Prediction of restaurants which will fail food inspections
- Estimate economic health ("micro-GNP") of neighborhoods and sub-neighborhoods
- Generate industrial profiles for neighborhoods
- Financial fraud detection (from city transactions)
- Payment error detection (from city transactions)
- Measuring satisfaction with agencies through social media
- Identify delays in fulfilling 311 service requests
- M/WBE (minority/women owned) companies that attempt to skirt procurement regulations

About

This is a prototype for demonstrating geospatial and time aggregation across multiple Chicago open datasets.

Datasets available

- Crimes 2001 to present
- CDPH Environmental Complaints
- 311 Service Requests Graffiti Removal
- 311 Service Requests Garbage Carts
- 311 Service Requests Rodent Baiting
- 311 Service Requests Pot Holes Reported
- 311 Service Requests Sanitation Code Complaints
- 311 Service Requests Alley Lights Out
- 311 Service Requests Street Lights One Out
- 311 Service Requests Street Lights All Out
- Food Inspections
- Building Violations
- Building Permits
- 311 Service Requests Vacant and Abandoned Buildings Reported

Dataset: Crimes - 2001 to present Date range: 7/14/2013 - 7/14/2014 **Spatial resolution:** ~500m Crimes - 2001 to present This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Show more

Developing methods to "measure" composite sustainability factors...

- Built Environment
- Neighborhood Assets
- Housing and Rental Prices
- Building-level Energy Use
- Solar installations
- Renewables generation
- Longitudinal Surveys
- Employment records
- Waste tonnage by block
- Transportation
- Traffic density
- Air quality
- Emissions

- Energy
- Materials Management
- Access and Mobility
- Air Quality and Carbon
- Water
- Habitat and Ecosystem
- Community Vitality

...and to identify "neighborhoods" that are "similar" (control groups for evaluation).

Source: Central Corridor Eco-District: An Introduction (March 2012, City of San Francisco)

Negative Impacts

Lowers property value

Crime

Lost taxes

Legal Obstacles

Unknown owner

Unpaid bills

Contaminated land

Guiding Indicators

Housing stability

Affordability

Vacancy

Matt Gee, UChicago

Chicago optimize investments in vacant property.

Muneepeerakul, R., J. Lobo, S. T. Shutters, A. Goméz-Liévano and M. R. Qubbaj. 2013. Urban economies and occupation space: Can they get "there" from "here"?. PLOS One 8(9):e73676. DOI: 10.1371/journal.pone. 0073676.

The pace of urban life increases with city size in contrast to the pace of biological life, which decreases with organism size.

Growth, innovation, scaling, and the pace of life in cities

Bettencourt L M A et al. PNAS 2007;104:7301-7306

©2007 by National Academy of Sciences

University of Chicago, Argonne National Laboratory, The School of the Art Institute of Chicago, and The City of Chicago

Academic Partners:

Arizona State University Clemson University

MIT

Illinois Institute of Technology

Northwestern University

Northern Illinois University

Purdue University

University of Illinois-Chicago

Initiative

Implement policies and infrastructure to allow for urban technology experimentation

The City will implement policies and basic infrastructure that make Chicago friendly to technology experimentation, allowing Chicago to become a global leader in environmental sensing, spectrum research, and wireless connectivity

University of Illinois Urbana-Champaign University of Notre Dame

Cisco

Qualcomm

Intel

Why is asthma more prevalent in some parts of the City? Is there a link to infrastructure? Environment?

Industry Collaborators

Motorola Solutions

Schneider Electric

Zebra Technologies

How is air quality affected by traffic flow and weather?

Would real-time pedestrian and vehicle flow data enable safer, more efficient streets?

Can place-based educational games keep teens interested in school?

The School of the Art Institute of Chicago and the University of Chicago have developed a customizable design to *engage* and *inform* citizens. Training workshops with neighborhood youth began in July 2014.

SCREEN PATTERN PROTOTYPES

RENDERED CONCEPT

ARCH/INARCH 6112
NODES/NETWORKS/INTERACTIVITY
FALL 2013

The Eric & Wendy Schmidt Data Science for Social Good Improving Communities through DataDriven Land Banks

THE UNIVERSITY OF CHICAGO

Sophia Alice, Evan Misshula, Skyler Whorton, and Tom Plagge

Summary

The foreclosure crisis led to an explosion of abandoned properties in Cook County—properties that can destabilize neighborhoods, depress tax revenues, drain government resources, and attract crime and decay. The Cook County Land Bank is a new agency tasked with putting them back to use.

The Problem

The Land Bank has several tools at its disposal to redevelop abandoned buildings. They can clear title, forgive back taxes, combine parcels, and hold land tax-exempt until demand for the property recovers. However, since there are over 100,000 vacant residential addresses in Cook County (2012 Q4, HUD/USPS), the Land Bank must be selective in its acquisitions.

Vacant properties in a particularly distressed portion of Cook County (CMAP Green Healthy Neighborhoods plan),

To help the agency determine which distressed properties to acquire – and what to do with them - we are developing prototype mapping and analytical tools that:

*Estimate housing demand and affordability in the

Assess neighborhood stability.

·Identify nuisance properties.

•Evaluate the economic impact of fixing up and selling the property, or demolishing it

The agency will use these community and property scores to help guide their strategy and operations as they begin acquiring properties next year.

Dat:

-We used housing market data provided by the Institute of Housing Studies at DePaul University and Cook County. These data include real estate transactions, more property assessments, foreclosures and propert boundaries throughout the county, tagged by grand property type.

 We also incorporated 311 and crime report dat City of Chicago, vacancy data from HUD/USPS data from HMDA, and economic data from the

This work was done during

Community Scores

We are measuring the health of neighborhood real estate markets along several dimensions, including stability and affordability. The stability score (S) is based on Walker & Winston (2010), and depends on property values (V), transaction volume (V, V_z) mortgages to owner occupants (M), and the prevalence of high-cost lending (H). The affordability score (A) is based on income (I) and median property sale price (P) in each census tract.

Property Scores

We are also developing scores for individual properties based upon their nuisance values to their neighbors and their economic impact on the community. The former is based on 311 and crime reports.

For the latter, we are using a hedonic pricing model that takes into account property and neighborhood characteristics. Based on historical data, we can estimate the percentage by which a foreclosure, vacancy, or demolition in a given community will affect the surrounding property

Our preliminary model indicates that, controlling for the basic demographic and economic characteristics of its community, each foreclosure that occurs within 1/8 mile of a property has approximately a -2% effect on its price.

Web Application

We are incorporating the scores and maps we developed into a Django web application with a PostgreSQL database and PostGIS extensions. The parcel data will also be available via an API so that it can be kept synchronized with the Land Bank's inspection and inventory systems.

Conclusions

The Cook County Land Bank plans to attack the problem of abandoned buildings in a nimble, data-driven way. Having all of the relevant information in one place will save the staff time, and summarizing the information in a handful of meaningful, digestible scores will help make the bank's decisions clear and transparent. A systematic approach to property acquisition will also allow the agency to evaluate the impact of the strategies it pursues.

Future Work

The application and algorithms we provide to the Land Bank will be prototypes, intended primarily to guide the board's strategic discussions. As the agency moves into operation, the indicators and scores can be calibrated against real results, and can be revised to reflect changing strategies or market conditions.

JULY 25, 2013, 7:47 AM | P Comment

A Summer of Data Hacking Social Problems

Ehe New Hork Eimes Technology | Personal Tech | Business Day

By STEVE LOHR

SAVE

The idea, Rayid Ghani recalled, grew out of his experience speaking to computer science students at elite schools like Carnegie Mellon, Stanford and the University of Chicago. President Obama had just won his re-election bid last fall. And Mr. Ghani, chief scientist for the campaign, was on a kind of explanatory victory tour, describing how cutting-edge data analysis and computing tools gave its side an edge.

Robert Kozl

Rayid Ghani, chief scientist for President Obama's re-election campaign.

For Mr. Ghani, the Obama campaign

demonstrated how those tools could be used to influence people in fields beyond the well-known commercial ones, like search, social networks and online advertising. And beyond politics, he would tell the students, were a host of social challenges in health care, education and urban development where their skills could be put to good use, working with nonprofits, civic groups and local governments.

2013 Fellows

Montgomery County
Public Schools

2014 Data Science for Social Good Partners

Sarah Abraham
Statistics
University of Michigan

Julius Adebayo

Engineering

MIT

Everaldo Aguiar

Computer Science

University of Notre Dame

Jeff Alstott
Psychiatry
University of Cambridge

Nasir Bhanpuri
Biomedical Engineering
University of Southern
California

Cindy Chen

Engineering

Purdue University

Matt Conway

Geography

University of California,

Santa Barbara

Nick Eng

Mathematics

University of Pennsylvania

Dylan Fitzpatrick

Computer Science

Carnegie Mellon University

Ben Green

Mathematics

Yale University

Chris Bopp
Computer Science
University of Colorado

Joe Brew
Public Health
University of Copenhagen

Nadya Calderon

Visual Analytics

Simon Fraser University

Scott Cambo

Computer Science

Cornell University

Alejandra Caro

Economics

Carnegie Mellon University

Matthew Heston
Computer Science
Illinois Institute of
Technology

Madian Khabsa
Computer Science
Pennsylvania State University

Vanessa Ko
Political Science
McGill University

Himabindu Lakkaraju Computer Science Stanford University

Andrew Landgraf
Statistics
Ohio State University

Peter Landwehr

Computation

Carnegie Mellon University

Christopher Lazarus

Applied Mathematics

Instituto Tecnológico

Autónomo de México

Jeff Lockhart
Computer Science
Fordham University

Alex Loewi
Public Policy
Carnegie Mellon University

Majumdar

Statistics

University of Minnesota

Miguel Perez
Architecture
School of the Art Institute of
Chicago

Carlos Petricioli

Computer Science

Instituto Tecnológico

Autónomo de México

Eric Potash

Mathematics

Northwestern University

Layla Pournajaf

Computer Science

Emory University

Andrew Reece
Psychology
Harvard University

Robert Manduca

Public Policy

MIT

Isaac McCreery

Mathematics

Oberlin College

David Miller
Psychology
Northwestern University

Philip Ngo
Computer Science
Harvard University

Diana Palsetia

Computer Science

Northwestern University

James Savage

Economics

University of Melbourne

Tracy Schifeling
Statistics
Duke University

Carl Shan
Statistics
University of California,
Berkeley

Raphael Stern
Engineering
University of Illinois

Stephen Suffian
Computer Science
Villanova University

Sarah Tan
Statistics
Cornell University

Misha Teplitskiy
Sociology
University of Chicago

Sabina Tomkins

Computer Science

New York University

Rafael Turner
Computer Science
University of Chicago

Vrushank Vora

Mathematics

University of Chicago

Ellery Wulczyn

Computer Science

Stanford University

Zhou Ye

Computer Science

Johns Hopkins Universi

Sam Zhang
Computer Science
Swarthmore College

URBAN CENTER FOR COMPUTATION AND DATA

www. UrbanCCD .org

C @ ANL.GOV